Learn How to Make Bracelets:
Free Bracelet Designs and Projects from Jewelry Making Daily
EVERYONE LOVES BRACELETS – among other reasons, because it’s so easy to see the bracelet you’re wearing yourself. From light and frilly to a major statement piece, the bracelets you put on add an instant touch of special to any outfit.

So here are three outstanding bracelet projects you can make. One is a classic cuff with a playful twist. Elegant and lively with its broad, rigid silver form and dancing silhouettes, this is an imaginative bracelet design that can be worn to dress up jeans or nudge that office outfit into something a bit more relaxed and creative.

For an easier metalworking project, take a look at the floral bracelet put together with simple wireworking techniques. With its punched silver disks, Lucite flower beads, and crystal centers that shimmer like drops of morning dew, this piece is both pretty and unexpected.

Looking for something more challenging? Try the fairy tale bracelet: stretch the patterns in pieces of mokumé gané sheet as you dome them, bezel set each piece along with one contrasting opal cab, and link the elements together with riveted hinges for a look that is really different.

But why limit yourself to one or the other? Make them all —then experiment with your new ideas and techniques to create a bracelet design that is truly your own.

Merle White
Editorial Director, Interweave Jewelry Group
floral strainer bracelet

Unique focal pieces with crystals and Lucite.

By Cassie Donlen

Try your hand at incorporating your favorite crystals into a domed silver discs bracelet. After punching the holes into the silver discs, they do not look like anything special. Just wait though…once the discs are domed and brushed with fine steel wool, they look quite sharp.

tools & supplies

- 16-gauge 6.5mm ID jump rings, 2
- 18-gauge 4.5mm ID jump rings, 9
- 20-gauge round silver wire, 8”
- 26-gauge fine silver wire, 5 1/2”
- 22-gauge 1” silver discs, 4
- Silver toggle clasp
- 10mm tall brown lampwork disc beads, 2
- 8mm round tanzanite purple crystals, 4
- 10mm tanzanite flower-shaped crystals, 4
- 4mm crystal bicone violet beads, 24
- 12mm lavender Lucite flowers, 12
- Size 11 purple seed beads, 12
- Chain nose pliers, 2 pair
- Metal dapping block with 1” well
- Chasing hammer
- Hole punching pliers with 1.25mm hole
- Hole punching pliers or 2-hole punch with 1.8mm hole
- Fine steel wool
- Rawhide hammer
- Flush cutters

1. Take the silver discs, and punch small holes all over each one in a random pattern. On opposite ends of each disc, punch two larger holes using 1.8mm hole punching pliers or a two-hole punch. These two holes need to be larger to accommodate the thickness of the jump rings.

2. Use a rawhide hammer to flatten down any rough edges made by punching the holes.

3. Place one of the silver discs into the 1" well of the doming block. Use the corresponding large dap and a hammer to force the flat disc into a dome shape. Repeat for the remaining discs. Brush the silver discs with fine steel wool to give them a brushed satin look.

4. Take a 5" strip of 26g silver wire. String on a seed bead, and fold the wire in half so that the seed bead is in the center. Thread on one 4mm bicone crystal, and a 10mm Lucite flower onto both ends of the silver wire.

5. Three of the flowers will be placed onto each disc. Taking this into account, place both ends of the wire into a hole on the silver disc, making sure that there is enough room for the other two flowers. Thread on a 4mm bicone crystal onto both ends of the wire. Spread the two wires apart into a 180° angle.

6. Choose two holes that are close to the flower. Thread one wire into each of these holes. Use a pair of chain nose pliers to pull the wire through the hole if needed. Coil three to four times around the base of the flower. Trim the wire and push it down so it is flat. Repeat for the second wire.

7. Add two more flowers for a total of three on each silver disc. Do not thread the wires through the two larger punched holes.

8. Take a 6" piece of 26g wire, and thread it in alternating patterns, an 8mm round crystal and a 10mm flower-shaped crystal for a total of eight beads. Shape the wire into a circle. Remove any slack in the wire, and twist the wire for three coils to make it tight. Trim each end, and use a pair of chain nose pliers to flatten the trimmed wires.

9. Take a 4" piece of 20g wire and make a wrapped loop on one end. Thread on a lampwork disc bead, and make another wrapped loop. Repeat for the other lampwork bead.
10 Open a 6.5mm jump ring, and thread it gently over one side of the crystal circle. Before closing the jump ring, thread it through one of the larger holes of a silver disc. Add a second 6.5mm jump ring onto the opposite end of the crystal circle, and through a large hole on another silver disc. Close the jump ring.

11 Using the 4.5mm jump rings, add the lampwork beaded links in between the rest of the discs. Lastly, add the ring of the toggle clasp.

12 Add three to five 4.5mm jump rings onto the toggle bar before attaching it to the silver disc. If the bracelet is too small, just add additional jump rings. If it is too large, remove a jump ring or two.

Cassie Donlen has been a lampwork artist and jewelry designer since 2001. She lives in St. Louis, MO with her husband and three sons. Cassie has a line of instructional DVD’s covering lampworking and jewelry design. Visit her websites at glassbeadle.com or ticklemebeads.com.

LET US INSPIRE the Artist in You

From cover to cover, Jewelry Artist brings you unique jewelry and gem projects in an easy-to-follow format.

SUBSCRIBE TODAY!
jewelryartistmagazine.com
FAIRY TALE LINKED BRACELET

Eight links designed to tell different stories.

PROJECT BY
WOLF DOSCH
All Photos courtesy of: WOLF DOSCH and GEORGE POST

MATERIALS AND TOOLS YOU NEED

MATERIALS
- 7 insets of mokume
- Boulder opal for the clasp
- 4mm wide titanium strip
- 20-gauge silver sheet
- 26-gauge silver sheet
- Sheet of 22K gold
- Shakudo (alloy of mostly copper with a small amount of gold)
- 0.114” thick-walled 18K gold tubing
- Paste flux
- Pickle
- Medium solder
- Straight, thick titanium wire
- Yellow ocher
- Paper towel
- Cotton swabs
- Liver-of-sulfur
- Beeswax
- Solvent (paint thinner)

TOOLS
- Metal shears
- Wooden dapping block
- Leather mallet
- Wooden dapping punch
- Bench shear
- Shaping pliers
- File
- Torch
- Soldering tweezers
- Perforated soldering board
- Half-round medium file
- Medium sanding slab
- Two ceramic fragments
- Tube cutting jig
- Jeweler’s saw
- Fine saw blade
- Soldering pick or other pointed tool
- Fine-pointed brush
- Riveting hammer or hammer with small flat head
- Rectangular bezel mandrel or piece of steel to fit in between links
- Heating device (griddle)
- Steel brush or toothbrush

I had the idea of creating a linked bracelet, about 8” long, made up of eight links, seven with metallic insets. The clasp holds a beautiful, strongly-colored boulder opal and gives the whole bracelet an extra punch, which it certainly deserves.

The links are in different shapes, yet they complement each other. The insets are patterned differently, but play off each other. They are set in dark oxidized and brushed silver, linked by 18K gold tube hinges, to add even more contrast and play. The point of the whole bracelet was to tell a story in 8 chapters, which is why I named it the Fairy Tale bracelet.

For this project I used mokume gane, sterling, shakudo, 18K and 22K gold, and boulder opal. The mokume gane sheet is special ordered. Since I do not consider myself a mokume gane expert or purist, and use a variety of other metal blending and texturing techniques for making of one-of-a-kind jewelry, I buy the ready-made laminate.

I developed several sheets with various patterns using different shapes of burrs for different effects. Additional special effects can be achieved by rolling the laminate (after burring) in just one direction to stretch the patterns, and distort them in interesting ways. For instance, I like stretching circles into ovals. Working with burrs takes some practice and concentration, plus a firm hand (the burr has a tendency to slip and mar the metal surface) but the results are worth the effort.
Constructing the links.

Step 1 Five of the links feature insets of mokume, and two feature another technique which will be explained later. Cut the seven insets out of previously prepared sheets with metal shears. I follow a rough drawing I made when I designed the bracelet, and allowed for adjustments and a certain amount of improvisation.

Step 2 Place the prepared insets into a wooden dapping block. Use a leather mallet and a wooden dapping punch to indent them slightly to give them additional dimension and drama.

Soldering the insets into the bezels.

Step 3 Use some kind of support to keep the concave inset from moving during soldering. Use a 4mm wide titanium strip that is open and adjustable. Place the mokume so it rests above and partially inside of the strip.

Step 4 Cut strips of silver from the 20-gauge sheet with bench shears. Anneal, and carefully shape the bezel segments, using your fingers or shaping pliers.

Step 5 Flux with paste flux. The copper inside the shakudo develops strong oxidation, so apply the flux quite generously. Move the fluxed bezel segment flush against the inset for a perfect fit. Solder them together, using medium solder.

Step 6 Add the next segment for the bezel in the same fashion, using medium solder. The melting point of mokume is rather low because of the silver/copper/shakudo layering. Avoid hard solder on the mokume by all means. I use wire solder. Hold the torch in one hand, and the wire in the other, so you can touch its tip to where you want to solder at just the right moment.

Step 7 Solder on the final segment of the bezel. Sometimes it is difficult to shape an exact fit. Force the bezel into the inset with soldering tweezers. Two titanium wires are stuck into the perforated soldering board to hold the object in place.

Step 8 Cut off the ends of the bezel strips, and file them smooth.
Filing to shape.

(Step 9) Use a half round medium file, and file down the bezel so it sits 2mm above and parallel to the mokume. The bezel will be wavy, getting wider or narrower. The mokume inset is higher or lower because of its irregular and concave shape; this effect adds to the drama. Buff the filed edge to a smooth finish.

(Step 10) Place the link on a medium sanding slab. Move it back and forth on the slab, applying pressure until the bottom of the bezel lies perfectly flat.

Soldering the bottom to the link.

(Step 11) Drill and flux a completely flat sheet of 20-gauge sterling. Place the link on top of it. The drilled hole should be under the link to allow gases to escape that build up during soldering. Without it, the link would be quite difficult to solder. Even if you’d succeed, it would leave a strong vacuum inside the link once it cooled off.

(Step 12) Place the fluxed link and the bottom onto the two ceramic fragments, lying 3⁄4" apart. Holding the wire solder in one hand, and the torch in the other, carefully heat the top and bottom—from above as well as from below—to eventually focus on the seam between the bottom and link top. At the right moment, touch the fluxed end of the wire solder to the base, close to where the bezel rests. Once you see it flow, remove the wire while brushing the assembly with the flame. Pull the liquid solder around the seam. Solder always follows the heat. If there wasn’t enough solder to go all the way around, repeat the procedure on the other side, until the top is completely soldered to the base. Use medium solder.

If you are not very experienced, you might wonder how so many soldering operations can occur so close together, with solder of the same melting point? Practice. With some projects, you don’t have the luxury to start with hard and move onto medium or easy, as they teach in books or in classes. It is possible to solder a complex piece of jewelry with only extra hard solder. This is necessary if you want to enamel onto a finished piece of jewelry at high heat. Practice and concentration are the key.

(Step 13) After all 7 links have a bottom attached to them, and are pickled and dried, saw off the bottom just above and below the link. Leave a straight-edged narrow area to the left and right of the link. This is where the link will be joined with the tubes and rivet hinges.
(Step 14) It takes some measuring and a little math to figure out how long the tube segments have to be. I used a 0.114" thick-walled 18K gold tube, clamped it into a tube cutting jig, and sawed off the segment with a fine saw blade. If you don’t own a jig, carefully mark and saw off the tube segments. An exact 90° angle cut is required.

(Step 15) Take a perfectly straight thick titanium wire, and push it through five tubes to be soldered. Use the titanium wire for adjustment only, to keep the tube assembly straight and in place during the next step. It must be titanium wire and not silver so you don’t accidentally solder it to the whole arrangement. Titanium cannot be soldered under normal circumstances, and will simply not connect with the solder.

(Step 16) Apply flux to three tubes, and place a tiny amount of medium solder onto them with a soldering pick or any other pointed tool.

(Step 17) Apply the torch flame cautiously so as not to melt the tube, until the solder fuses with the tube. Quickly remove the flame. Repeat this for the two remaining tubes. Pickle, rinse, and dry.

(Step 18) Using a large, broad flame, heat the link sufficiently by brushing sideways, as well as in a circular motion. Reduce the flame, but continue to move it over the entire piece. With some practice you can do both simultaneously with one hand if you have the “little torch.” At the right moment, direct the torch to the side where the tubes are lined up. Keep it moving until you see the solder melt and connect them to the link.

(Step 19) Repeat this procedure on the opposite side of the link, except links 1, 3, and 5 are brushed with ocher, and links 2 and 4 have a small amount of solder fused to them. Solder the tubes to the remaining seven links, leaving one side each of the first and last links open, for the catch.

Joining the links.
(Step 20) Pickle, rinse, and dry all the links. Lay them in a corresponding order, and check for fit. A little filing may be necessary for an exact fit. Buff and polish all the links, because you’re done with soldering. All that is left to do is to rivet them together, and color the insets. Finish the links well at this point, because it is easier to sand, buff, and polish individual links, rather than the whole bracelet once it is linked.

(Step 21) For riveting, you need a riveting hammer (or a hammer with a small flat head), a rectangular bezel mandrel, or any piece of steel that fits between the links. You’ll also need a round steel blank. If you do not own one, you could saw off the head of a steel dapping punch, and use the beheaded punch.
(Step 22) Place the bracelet sideways on the rectangular mandrel so that the tube end, as well as the inserted wire, rest firmly on it. Place the steel blank on top of the other end of the wire.

Here you see me fumbling a bit, as I need to hold the steel blank perfectly straight, and perfectly centered on the protruding wire. And I’m holding the bracelet perfectly straight, balancing on the narrow mandrel, all with only three imperfect fingers!

(Step 23) Tap on the steel blank with the hammer repeatedly, but GENTLY until you notice that the wire has slightly spread on top. Check frequently, and don’t go beyond that point! Turn the bracelet to the other side, and repeat the procedure. If properly done, these two links are now permanently joined. Repeat the steps with all the other links, until the bracelet is completely linked.

Note about the clasp: The clasp featuring the boulder opal is made of 18-gauge sterling, and the bezel is made of 22K gold. The rounded end of the silver sheet was bent backward, and then the tip of the tongue was bent slightly upward so it forms a hook. The hook can slide over the 18-gauge silver wire at the other end of the bracelet. The gap between the tongue and the base is a little narrower than the wire. It’s thick so that there is a bit of resistance, and the closure cannot open accidentally. It’s simple, and safe.

Coloring the bracelet.

(Step 24) Place a sheet of paper towel on a heating device (griddle), and place the linked bracelet on top. There are various ways of coloring mokume, or metals in general, and there is literature available on that subject.

(Step 25) Reactive Metals Studio offers several solutions useful in mokume coloring. I am also fond of heat coloring with a torch. Heat coloring should be performed BEFORE links are riveted together. Partial removal of oxidation can result in stunning effects.

For that purpose, I dip a cotton swab into pickle. I use pickle made of citric acid and water. It is quite effective, and less hazardous than commercial pickle. Carefully wipe the oxidized surface, and remove some of the coloration for added contrast.

(Step 26) I also experiment with household substances like salt, vinegar, ammonia, and nearly anything else that looks mean or smells nasty. Liver-of-sulfur is useful not just to darken solid alloys, but has applications in mokume as well. I apply coloring solution mostly with a cotton swab, rubbing until I have the desired effect. Often I try one solution over another, rinsing in between, and so on.

I’ll sometimes spend an hour or more experimenting on just one small item until I have an effect I really like. Another very potent coloring agent is copper or silver etching mordant. Wipe on briefly with a cotton swab, and rinse thoroughly, brushing with a toothbrush and a mix of diluted detergent and ammonia. The effect can be stunning. To get it just right is often a matter of trial and error.
Applying the finish.

(Step 27) After coloring, rinse the bracelet thoroughly, and place it on a paper towel on top of the heating device. Heat the links until they become almost too hot to the touch, and brush hot liver-of-sulfur on all the silver areas, bezels, and the area you soldered the links to.

Rinse the bracelet GENTLY, brushing the silver parts with a steel brush, which gives the oxidation a more uniform and slightly textured look. If you don’t trust the steel brush approach—use a toothbrush.

(Step 28) Put the bracelet back on the hot griddle to dry it completely. Lower the temperature to warm. Dilute a small amount of beeswax with a small amount of solvent, like paint thinner or gasoline, and apply with a clean cotton swab to all the segments, as well as the blackened silver. The solvent will evaporate, leaving a thin film of beeswax. Use a clean cotton swab to wipe off excess wax. This action also polishes the remaining wax to a beautiful sheen. You can follow up by brushing with a clean, dry toothbrush to get into tight places.

The wax not only enhances the appearance, but protects the oxidation from deterioration—to a point.

(Step 29) The second and fifth links featured in my bracelet are NOT mokume gane and are constructed in a totally different way. Tiny square chips about 3mm x 3mm are cut with metal shears from sheets of 26-gauge fine silver, 22K gold, and shakudo, and are soldered to a 20- to 22-gauge sterling sheet.

(Step 30) This step is tricky. It’s best not to solder more than 3 or 4 chips to the base at the same time. The chips may float around and out of their locations once the solder begins to flow. It is very important to use a tiny amount of solder to minimize floating.

(Step 31) Apply the solder to the fluxed chip, and melt it carefully to the sterling surface. Prepare as many chips as you can solder in an hour. Prepare 10 each of fine silver, 22K gold, and shakudo, for a total of 30. Solder to the sterling backing 3 or 4 at a time as described earlier. Alternate one gold, one shakudo, one silver, etc.

(Step 32) When the first row is done, the second row is added in the same way, but using one of the other two metals. Alternate as before. The third row then begins with the other remaining metal. This way, a checkerboard pattern slowly emerges.

Don’t be overly concerned with accuracy in this process. As in mokume, once you roll the sheet through the rolling mill, you will be surprised by what happens.

The mill is the great equalizer and your best friend. Just be careful not to equalize your fingertips!

(Step 33) When you roll the finished sheet, don’t apply much pressure, and use just enough to flatten the chips. Anneal the sheet again. Adjust the mill for a tad more pressure. Roll again, but this time crosswise (at a 90° angle to the previous direction you rolled). This will assure that the chips are stretching in all directions and completely joining with the neighboring chips, for a homogeneous appearance.

As with mokume, the Harlequin look can be changed by feeding the sheet repeatedly in the same direction. Other shapes or other patterns can be produced. The possibilities are nearly limitless.

WOLF DOSCH was born and raised in Germany. He took very basic courses in jewelry making there, and in New York City when he moved to the United States in 1963. He is mostly self taught. He moved to Florida in 1999, and sells his work at art shows along the East Coast, from Boston to Miami. Ninety percent of his work is one of a kind, and he aims to create items with personality and magic. He is influenced by many sources, including expressionism, nature, and African art.
Paper Dolls Cuff Bracelet

Using metal sawing techniques.

Project by
Elizabeth Glass Geltman

Opening Photo: Todd Murray
Project Photos: Elizabeth Glass Geltman

Bangles are in! Make a spectacular bracelet of sterling, copper, or brass using only a few simple tools. Discover the ancient metalsmithing techniques of sawing and piercing. Create your own works of art, and wear them every day!

Materials and Tools You Need

Materials
- 2" × 7" 18-gauge metal sheet

Tools
- Bracelet mandrel
- Jeweler's saw & blades
- Dremel, flex shaft, or drill press
- Needle file set
- Drill bits
- Sandpaper
- Ruler
- Hammer
- Sunshine® cloth

(Step 1) Draw the design on a piece of paper and transfer onto the 2" × 7" metal sheet by gluing the design with rubber cement directly onto the metal.

(Step 2) To create a cut in the center of sheet metal, you will need to drill a hole. Select a drill bit that is large enough for a saw blade to slip through.

(Step 3) Before beginning to drill, mark the sheet metal. You can use a scribe, punch, or automatic center punch to create this registration mark.
(Step 4) Once the metal has been marked, a mechanical drill can be used to accurately create a hole. This process is called piercing the metal. Marking the metal prior to drilling ensures that there is no slippage—a safety, as well as an aesthetic, concern. Drilling is most easily done with a drill press. It can also be done with a flex shaft or other drill.

(Step 5) Dip the drill bit into Burr Life® to protect the bit before drilling. Insert the drill bit you selected and coated into the chuck, and secure it. The metal should be placed on top of a wooden block that covers the table. Drill at a slow pace; fast drilling will cause the bit to heat up and become dull and/or break.

(Step 6) Hint: When you are drilling a hole to begin an interior design, it is very important to place the drill mark inside of the line you have drawn on your sheet metal. This marks where the design will be sawed. If you drill on the line itself, the bit will leave an unsightly mark in your design, which will require extra attention when finishing your piece.

(Step 7) To select the proper saw blade, the rule of thumb is that three teeth should touch the edge of the metal when sawing. There are three screws on the saw frame. One adjusts the height of the blade. The other two allow you to insert the blade, and draw it tight. Loosen the wing nuts parallel to the handle, and insert the blade with the teeth facing away from the frame and down toward the handle. The blade should “twang” when it is properly tightened.

(Step 8) Insert the saw blade through the hole you just drilled. Fasten the saw, and begin cutting out your design. Most jewelers use a bench pin to support the work when sawing.

(Step 9) Let the teeth of the saw do the work. Do not push the saw; instead, let the blade cut itself as you move the saw frame up and down slowly. Note that sawing too fast will increase friction, and cause the saw blade to heat up and break. Get into the habit of moving the metal to be cut, and not the saw frame. To saw a corner, saw it in place and begin to turn the metal.

(Step 10) To remove the blade, simply loosen the screws on the frame and pull the blade out gently, or wiggle the saw blade back out (reversing direction).

(Step 11) To maintain the integrity of your design, be sure to saw on the lines. After you have cut out your sheet metal into the design you have drawn, file down the metal to smooth it out, and remove any burrs. The bench pin is again typically used to support the piece when filing.

(Step 12) The goal of filing is to remove all saw teeth marks and inconsistencies in your sawing. Note that files only smooth when used in the push motion. There is no need to move the file back and forth against the metal, and doing so may dull the file.

(Step 13) Periodically tap the file on the bench pin (or other hard surface) to remove particles of metal that stick in the teeth of the file. Files should be periodically cleaned to remove metal.

(Step 14) Use sandpaper to finish your piece to either a high shine polish or to create a rough, scratch finish. The goal of sanding is to eliminate all scratches and gauges in your piece caused by manufacturing gouges. Begin with 220-grit sandpaper, and sand in one direction.

(Step 15) When you are satisfied that you see no more marks on the metal, begin sanding with 320-grit sandpaper in a motion perpendicular to the direction you sanded with the 220-grit. By sanding in a perpendicular motion, you will be able to see when you have sanded away all the 320-grit scratch marks.

(Step 16) Once you are again satisfied with your work, shift the piece perpendicular once more, and begin sanding with the 400-grit sandpaper. Note that you are sanding in the same direction you were when you were sanding with the 220-grit sandpaper.

(Step 17) Proceed in the same manner with the 600-grit sandpaper, and if necessary, 800-grit sandpaper until all marks have been removed, and you have achieved a high polish.

(Step 18) Wrap the sheet metal around a bracelet mandrel to shape the cuff. Hammer gently, if necessary. Buff it with a Sunshine® cloth.